思路:设点,消参方法:消元法(反解,带入相消),点随点动法,作差法,图像法。一般的考题多于向量,夹角,圆锥曲线,直线相结合
初一动点问题的解题没有口诀,公式如下。
1、数轴上两点之间的距离。
可用绝对值来表示,即两点所表示的数差的绝对值。如,数轴上点A,B所表示的数是a,b,则AB=|a-b|或|b-a|。
2、数轴上一个动点用字母来表示。
用有理数的加法或减法即可解决,就是起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减。如,数轴上点A对应的数为-1,点P从A出发,以每秒2个单位长度的速度向右运动,设运动的时间是t,则点P所表示的数是-1+2t。
3、数轴上任意两点间的线段的中点。
两点所表示的数相加的和除以2,如数轴上的点所表示的数是a,b,则线段AB的中点所表示的数是(a+b)/2。
一元一次方程的应用;数轴.
分析: (1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;
(2)设x秒时原点恰好在A、B的中间,根据两点离原点的距离相等建立方程求出其解即可;
(3)先根据追及问题求出A、B相遇的时间就可以求出C行驶的路程.
关键:化动为静,分类讨论。所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数运动。设出时间后即可表示该点位置:再如函数动点,尽量设一一个变量,y尽量用x来表示,可以把该点当成动点,来计算。
步骤:①画图形:②表线段:③列方程:④求正解。
- 相关评论
- 我要评论
-